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Stable Difference Schemes with Uneven Mesh Spacings* 

By Melvyn Ciment 

Abstract. We consider a finite-difference approximation to the Cauchy problem for a first- 
order hyperbolic partial differential equation using different mesh spacings in different 
portions of the domain. By reformulating our problem as a difference approximation to 
an initial-bQundary value problem, we are able to use the theory of H. O. Kreiss and 
S. Osher to analyze the L2 stability of our scheme. 

0. Introduction. In solving partial differential equations by finite-difference 
approximations, there are situations where the solution exhibits large gradients in a 
localized region. In such problems, one might wish to employ variable mesh patterns. 
The principal problem is then to obtain consistent difference equations at the interface 
of the mesh patterns without introducing any type of instability or without loss of 
overall computational efficiency. 

This paper considers the L2 stability of a finite-difference solution to the Cauchy 
problem ut = Au,, + BUV: u(x, y, 0) -(x, y), using two different spatial mesh 
patterns. Problemns of this type shall be referred to as mesh refinement problems in 
this paper. 

Stability is analyzed by reformulating our problem as a difference approximation 
to an initial-boundary value problem for a system of partial differential equations. 
General sufficient conditions for the stability of such systems are due to H. 0. Kreiss 
[3], (4] and S. Osher [6]. 

Numerical results obtained on New York University's CDC-6600 are presented 
which yield evidence of stability for cases not analytically treated (e.g. refinements 
having corners, and refinements using different time steps in different portions of the 
domain). 

I. Formulation of Problem. We shall refer to the following initial-value problein 
as Example I. 

(1.1) Ut = au, u(X, 0) = +X) 

for t > 0 and all x with a constant and u and 0 scalar functions. 
Consider a nunmerical solution using two different patterns of mesh spacings. 

On the right-hand side of the origin, the mesh length is Ax,; on the left-hand side, let 
the spatial mesh size be Ax,. Setting p =-Ax1/Ax2, take the mesh on the right-hand 
side as more refined than on the left, i.e. 0 < p < 1. In the following, let w', be the 

Received March 30, 1970. 
AMS 1970 subject classifications. Primary 65M05, 65M10; Secondary 65N10. 
Key words and phrases. Difference methods, stability, mixed initial-boundary value problems, 

mesh refinement. 
* This research was supported by A.E.C. Contract No. AT(30-1)-1480. 

Copyright i 1971, American Mathematical Society 

219 



220 MELVYN CIMENT 

Lax-Wendroff difference approximation [5] to the solution u(x, t) of Example I at 
x-jAx,, t-nAt. Then, for j = 1, 2, * , and n = 0, 1, 2, ..* 

(1.2) w+1 = (bi L b)w- + (1 - bi)w' + (b ? w+l b) = cat/Axj. 

To treat this initial-value problem by reduction to an initial-boundary value 
problem in the quarter plane, it is convenient to introduce a new difference function 
vi which denotes an approximation to u(-(j - l)Ax2, nAt) for j > 0. 

Now, with the vector notation 

(1.3) fj j=0, 1, 2, , n = 0, 1, 2, 

and with the obvious definition wn vl, the mesh refinement scheme can be expressed 
as 

(1.4a) 

zn + 1 = 2 2a1+izn+Z 

0 b2 + +[ b 1 bJ b b2 - b2 

for j- 1, 2, * , n = 0, 1, 2, (where b2 pbl). Actually, there remains to 
prescribe an approximation to u(0, t) at each time step, since a formula for VQ is still 
lacking. To derive an interface condition, we make the natural requirement that our 
difference scheme be of second-order accuracy at the point x = 0. Using the con- 
sistency conditions derived from Taylor's theorem, one could obtain directly a 
three-point asymmetrical scheme up to second-order accuracy. However, we prefer 
an equivalent formulation which expresses vO by second-order extrapolation in terms 
of w,, vt and ve. We complete the formulation of the mesh refinement problem as a 
matrix difference approximation to an initial-boundary value problem by expressing 
this interface condition in the matrix form, 

WO= [ 0 
[1 W1K ? 0 ] W1 (1.4b) zon =wO=[0 1X| + 1??1|2 n = 0, 1, 2, *.*.* 

vO .al af2, VI. 0 a03 V2 

where 
2 2(p-1) =1-p 

p(l + p) a2 I +3 1 p 

Because our difference equations were obtained by reflection of the left-hand side, 
(1.4) is consistent with the hyperbolic system 

Ktw = F Li [Lf D t z 0 -Op 

with compatability conditions w(0, t) = v(O, t). We shall refer to the system of dif- 
ference equations (1.4a, b) as System I. 

For initial-boundary value problems of the type formulated above, Kreiss [3], 
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[4] and Osher [6] have determined algebraic conditions which when satisfied guarantee 
stability of our difference approximation. 

In the algebraic verification of stability, for most of our mesh refinement problems, 
the following immediate corollary of the Main Theorem and Lemma 3 of Kreiss [4] 
has been used repeatedly. It is assumned that the reader is familiar with the terminology 
of that paper. 

COROLLARY I. The approximation 5 is stable if 
1. Assumptions 1-4 (of [4]) are satisfied, and if 
2. for all z, Izi >- 1, Det E(rj(z)) 0 implies that some I + 1 characteristic roots 

have absolute value equal to one. 
Note, E(r1 (z)) refers to the system (1.12) for Izi ? 1 and for z = 1 to (1.12') both 

of [4]. Also note that, for our System I, I = 1. 

II. Stable Mesh Refinement Schemes. In this section, we verify stability for the 
mesh refinement problem System I and introduce generally applicable interface 
conditions which yield stable mesh refinement schemes. 

THEOREM I. System I is a stable approximation for the Cauchy problen of Example 
IforO< <bil < 1. 

Proof. For 1bj1 < 1, assumptions 1-4 are satisfied since the Lax-Wendroff scheme 
is a stable, dissipative scheme. To check stability, find all eigenvalues X, of the mesh 
refinement problem, by expressing the eigensolutions as 

(2.1a) z4 = x 9i E igi 2 < c; X ? 1 X< : 1 

where g; = g3(X) is determined using the general solution of the characteristic 
equations 

(2.2) X = ? ' 1+(2 ) i + (1 - b2) + (i^ + (2t)bi)ri, ; = 1, 2. 

The g, take the form 

(2. 1b) g,(X) = g= [ constants, 
A: 72', 

since each ri (the characteristic roots) are separated by the unit circle for iXi ? 1, 
X pZ# 1. The p3i here are referred to as a = (of192)' in [4]. We now show that all nontrivial 
solutions of the form (2.1), when substituted into the boundary condition (1.4b), 
imply that rT = T2 = 1. Thus, stability follows by Corollary I. 

Substitution of (2.1) into the boundary condition yields 

(2.3) (a) f3 = 392T2, (b) 02 = a11T1 + a2O2T2 + a3T2, 

for a nontrivial solution, 2 # 0. Eliminating 01 and 2 gives 

(2.4) p(l - P)i2 + 2r1r2 + 2(p2 - 1)T2 - p(l + p) = 0. 

Equating the expressions for X from (2.2), yields, upon clearing fractions, 

(2.5) 2bi(1 -p2)T1T2 + rlT2[b1 -P Pbl + (p2bi - pbl)r2 - (bl + bj)rjT2] 

-(b2 - bl)T2 ?0 
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Solve for r1r, and r1 from (2.4) and substitute into the above to find, after some 
rearrangement, 

(b2 - p - 1)(r_ 4 = 0) 

For a reasonable problem, this can only be satisfied if r2 = 1. Now, setting I2= 

in (2.4) yields that r=1. Q.E.D. 
We now present two different interface conditions whose stability is easily demon- 

strated and which are useful in higher dimensions. Consider the formula for extrapola- 
tion of a sufficiently smooth function v(x), 

(2.6) vO E ( (v, 

where v; = v(jAx) (see e.g. [2]). Alter the format of System I so that vf 

u(-jAx,, nAt), for j = 0 1, 2, * * ; and so vo = wo for all n. Using (2.6) to define vo, 
refer to the resulting mesh refinement approximation scheme as System II. 

THEOREM II. System II is a stable approximation to Example I when a < 0. If 
a > O, then replacing v' in (2.6) by w, results in a stable mesh refinement scheme for 
b? _ 1. 

Proof. The algebraic verification of stability now follows trivially in the obvious 
matrix formulation. 

An interface condition, which has the advantage of being stable regardless of the 
sign of a, and is also suitable for the case of higher dimensions, can be had by taking 
p Ax,/Ax2 - 1 /M where M is an integer. Assuming a definition for ve and w, as 
in System I, we see that vo coincides with w" for n = 0, 1, * . . . This suggests use of 
the coarse mesh difference equation at the interface. This boundary condition in 
matrix form becomes 

(2.7) h'O] = [0 13 [W1j+[o JwM], n=0,t,2,) 
VO 0 O, 'VI t1 oJ Ujf 

We shall refer to the difference approximation formed by using (2.7) in conjunction 
with the difference equations (1.4a) as System III. 

THEOREM III. System III is a stable approximation to Example I for bi I ?! 1. 
Proof. Again, because of the separation of the roots, to check stability by Kreiss' 

theorem, try a solution of the form (2.1). Substitution into the boundary condition 
gives for nontrivial solutions 

f1 = f2 r2 and 12 =9irT 

A nontrivial solution exists only if O,f and 12 are both different from zero. Eliminating 
the O3 's, we find 

(2.8) T2r= 1. 

For a bounded solution, the above implies that Jr2 = JrI1 = 1. Thus, stability follows 
from Corollary I. 

We remark that the above formulation can be used to show that the interface 
conditions of Systems II and III can be used to match any 3-point dissipative difference 
scheme (even different ones on each side) along an interface [1] and retain stability. 



DIFFERENCE SCHEMES WITH UNEVEN MESH SPACINGS 223 

III. Equations with Two Space Dimensions. Consider the analogous mesh re- 
finement problem for 

(3.1) u-=aauz + bu, a, b constants, for all x and y and t ? 0. 

Let the plane x 0= be the interface between two mesh patterns. In the right half- 
plane, take mesh spacings in the x and y directions to be Ax, and Ay1, respectively. 
In the left half-plane, denote these respective mesh spacings by Ax2 and Ay2. We 
restrict our attention to the case where pi = Ax1/Ax2 = 1/N and P2 = AY1/AY2 
1/M, where N and M are positive integers. 

Let WO,, and V,',k denote approximations to u(jAxl, kAyl, nAt) and 

u(-(,j- 1)Ax2, kAy2, nAt), 

respectively, for n- 0, 1, 2, . j- 0,12 ... , k = 0k , i 1, i 2, ... (see Fig. 1). 
As in the one-dimensional problem, one needs to express WO, k, V0,7k as a linear com- 
bination of the values at neighboring points. From the definitions of our mesh func- 
tions, 

(3.2) VO,70 = WN,70M, Wo,A;M = V1 ,k, k = 0, d1, I2, * i i2 . 

At each time step, we still have to prescribe Won,k+i for k-0, = 1, + 21 . , i = 

1, 2, * , M - 1. In general, one could prescribe such points as a linear combination 
of the V1. values, say, 

(3.3) W,0M+i= - O,-t Vlkt + + i,0 V1,,k + * + a,8 x b+. 8 

for s, t natural numbers. 
Now, consider a mesh refinement problem for a 9-point dissipative approximation 

to (3.1), (e.g. the Lax-Wendroff scheme [5]). Then 

(a) a,b = E+a,k+Pi 

(3.4) 
(b) Wn,' =C (21 

a--i p.-i 

n 0, 1, 2, ,= 1, 2, 3, ,k 0, h1, 4L2, 

where the C('j are functions of At, Axi, Ayi. Then, (3.2)-(3.4) is a well-defined ap- 
proximation to (3.1). Again, we treated the mesh refinement problem as a system of 
difference equations for an initial-boundary value problem. Because of the more 
complicated nature of the boundary condition in two dimensions, we found it neces- 
sary to introduce a vector of dimension M + 1 corresponding to the data 
(t.k0 V ...kM , W7,7M+M,). Then, reformulating our difference equations con- 
sistent with a system of M + 1 partial differential equations, we are able to prove [1]. 

THEOREM IV. If the difference schemes (3.4) are stable for the pure Cauchy problem, 
then the mesh refinement scheme (3.2)-(3.4) is a stable approximation. 

Proof. Because of the diagonal structure of our systems, it suffices to study all 
eigensolutions of the form 

Z k - = 1, E Ig 12 < c 
Yi 

= 
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0 M = V1 1 - Vo I WN,0 

\D ** */ 

3,0 2*OWO,O _IO N o* 0 * 0 

_ _ * 0 0 0 

__ * * * *0 

v3~~ ~~~~~~ ~ 0 02 0w o 0ot .. NO=V 

0 0 

* 0 0~~~~~~~~ 

N=3, M=4 
F IGURE 1 

and show that Corollary I is satisfied for all yo, IY = 1. One finds that the conditions 
(3.2), when expressed in the indicated matrix form, lead directly to Eq. (2.8). Thus, 
arguing as in Theorem III, stability is demonstrated. 

We note that following Kreiss [3] and [1], the matrix analogues of Theorems II-IV 
hold for Lipschitz continuous diagonal systems. 

IV. Computational Results. Calculations were performed using the mesh refine- 
ment schemes of Theorems I-IV. The primary purpose was to compare the relative 
accuracy of the different interface conditions discussed above. We tested our methods 
on problems where the analytical solution was available. 

a. One-Dimensional Periodic Case. Table 1 lists the results of several calculations 
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using the Lax-Wendroff scheme for the initial-value problem of Example I with 
a - 1 and solution u(x, t) = sin 47r(x + t). We used the periodicity of our solution 
to restrict our calculations to the interval [0, 1] with refined region IR {x:1 X < 2 
By e(v) and e(w), we denote the maximum error of our scheme from the solution in 
the unrefined region and the interior of IX, respectively. 

To describe if any additional error due to our unusual interface conditions prop- 
agated into IR, we compute a quantity defined by 

e10o-- max {Iu(x, t) - w,1: t = "At, x = 3 + (I 1)OAX1}, 
i *23, 100 

since the error from x 1 3 cannot reach into more than 400 grid points of IR in 400 
time steps. 

In the mesh refinement problem, a small time step is needed for stability in I, 
However, using the same time step in the unrefined region will reduce accuracy 
there. To rectify this situation we also considered using different time steps in the 
different regions. The only difficulty in using this approach is at the interface. The 
interfaces for Systems I and III were treated by first advancing We/v+$ and w5'', for 

1, 2,. , 10. Then, the remaining is advanced in the usual manner until all points 
are at the same time level. Rows 7 and 8 of Table 1 show the improved results, and a 
comparison of rows 1-3 (or 7, 8) with row 6 shows that the interface conditions used 
at x = 1 do not propagate much error into IR since the e10o agree to 7 places in all 
entries. 

In Table 2 we present the results of computations performed for Example I with 

et = a (X) -1 2 0 < x < -1 

(4.1) 
=2 + sin 67rx 

XE IR, 4 
= 

12~3= = 

The quantities displayed in Table 2 are defined exactly in the same way as in 
Table 1. 

TABLE 1 

a -= 1 

At= 1/1750; At' - 1/175; Ax2 = 1/150; Ax1 = 1/1500 

t, time e(v) e(w) e10o 

1)Systeml 400 At 3.332 X 10-3 1.591 X 10-3 6.3 X 106 

2) System (m = 3) 400 At 3.332 X 10-3 1.656 X 10-3 6.3 X 10-6 

3) System IlI 400 A t 3.332 X 10-3 1.629 X 10-3 6.7 X 10-6 

4) No Refinement (Ax2) 400 At 3.333 X 10-3 

5) No Refinement (Ax2) 40 A t' 8.909 X 10-4 

6) No Refinement (Ax1) 400 At 8.9 X 10-6 8.9 X 10-6 6.3 X 10-6 

7) UnevenTime (I) 40 A t' 8.909 X 10-4 4.493 X 10-4 6.3 X 10-6 
8) UnevenTime (III) 40 A t' 8.909 X 10-4 4.493 X 10-4 6.3 X 10-6 
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TABLE 2 

a = a(x) as in (4.1) 
At = 1/1250; At' = 1/125; Ax2 = 1/150; Ax, = 1/1500 

t, time e(v) e(w) e100 

1) System I 400 At 7.136 X 10-3 1.397 X 10-3 1.000 X 10-3 
2) System lI (m-= 3) 400 At 7.134 X 10i3 2.764 X 10-3 1.000 X 10-3 
3) System III 400 At 9.993 X 10-3 1.401 X 10-3 1.000 X 10-3 
4) No Refinement (Ax2) 400 At 1.180 X 10-2 

5) No Refinement (Ax2) 40 A t' 2.358 X 10-2 

6) No Refinement (Ax2) 27 At* 2.901 X 1O-2 
At* = 15/1250 

7) Uneven Time (I) 40 At' 7.668 X 10-3 1.652 X 10-3 1.000 X 10-3 
=400 At 

8) Uneven Time (III) 40 A t' 7.668 X 10-3 1.611 X 10-3 1.000 X 10-3 

=400 At 
9) Uneven Time (III) 27 At* 4.841 X 103 1.553 X 1O-8 1.086 X 10-5 

=405 At 

b. Two-Dimensional Periodic Case. Calculations were performed for the initial- 
value problem u, = -us + u, with periodic solution u(x, t) = sin 2z-(x - t) 
* cos 2r(y + t) restricted to the unit square 0 ? x, y _ 1. The refined region was taken 
as DRe {(x, y): < x, y < 2 }. As in Table 1, we describe the accuracy with the 
analogous quantities e(v) and e(w), the maximum errors of our scheme in the un- 
refined region and DR, respectively. To describe the accuracy of the refined scheme 
away from the interfaces, we compute the error in the interior of DR, eint, as the 
maximum error in the interior square { (x, y): 4 x, y < -9-}. Table 3 lists the results 
of our calculations using the Lax-Wendroff scheme with our mesh refinement scheme 

TABLE 3 

At = 1/1750; Ax2 = AY2 = 1/45; Ax, = Ay, = 1/225 

t, time e(v) e(w) ei.t 

1) Ordinary refinement 100 At 1.182 X 10-3 1.143 X 10-3 4.36 X 10-5 

2) No refinement 
(Ax2, AjS2) 

a) At = 1/1750 100 At 1.165 X 10-3 

b) At' = 5/1750 20 At' 1.104 X 10-3 

c) At* = 1/175 10 At* 8.895 X 10-4 

3) Uneven time 20 At' 1. 104 X 10-3 1.033 X 10-3 4.36 X 10-5 

=100 At 
4) Uneven time 10 At* 8.895 X 10-4 7.822 X 10-4 4.36 X 10-5 

=100 At 
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using centered third-order polynomial interpolation along the interface. This is 
compared with ordinary Lax-Wendroff with three choices of time steps. We then 
compute with these time steps, using uneven time steps in a manner similar to the 
one-dimensional case. Our computations show that the interface condition does not 
introduce any additional errors, and the error in the unrefined region compares 
with the error for ordinary no refinement. 
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